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RBUST. TABILITY OF LINEAR DYNAMIC SYSTEMS WITH

APPLICATION TO SINGULAR PERTURBATION THEORY*...

0 by

NilsyR.Sandell, Jr *

In this paper we will give a simple approach to determining conditions

for stability of linear feedback systems subject to additive and multipli-

cative perturbations in the operators describing these systems. The approach

is based on techniques used in functional analysis, and provides an alternative

development and generalization of some conditions for the time -invariant

case that have appeared in the literature very recently. As an example of

the application of the conditions, we consider the determination of finite

regions of stability for singularly perturbed systems..

1. Introduction

--,n important theme in system theory is the preservation of various

system theoretic properties in the face of variations in the system model.

* This research was supported by the Departne4.f . "i .... w-. ... -

ERDA-E (49-18)-2087 and by ONR under contract N 14-76-C- 346 E V"-f /
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It is possible tc distinguish two variations on this theme. In the first,

attention is restricted to i.fin4.esimal changes in the parameters nf the

nominal system model. Thus cne begins by assuing that the nominal svstit

has a certain property, and ther. asks f there exists an pen set about the

nominal system parameters such tnac all the systems with parameters in this

set have the desired property. V will refer to investigations of tnis first

:ype as sensitivity theory. A second arproach requires the explicit dellneatli:n

of finite regions of models about the nominal model for which the given

property is preserved. We will refer to investigations of this second tvre

as robustness theory.

Within the context of sensitivity or robustness theory, there

are several properties that have been investigated. For example, it is

well known that the controllability property is insensitive to small para-

meter variations 1l,p. 43]. As another example, it is well known that

type-l servomechanisras have zero steady state step tracking error despite

large (but not destabilizing) variations in their transfer function matrices

[2).

In this paper we will focus on the robustness of the stability

property of linear multivariable feedback systems. This subject is of special

interest, since stability is the most basic system theoietic issue and since

practical feedback systems must remain stable in the face of large para-

meter variations.

The importance of obtaining robustly stable feedback control

systems has long been recognized by designers [3]. Indeed, a principal

reason for using feedback rather than open-loop control is the presence of
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model uncertainties. Any model is at best an approximation of reality, and

the relatively low order, linear time-invariant models most often used for

controller synthesis are bound to be rather crude approximations.

In classical frequency- domain techniques for single-input, single-out-

put (SISO) control system design, the robustness issue is naturally handled [3].

These techniques employ various graphical means (e.g., Bode, Nyquist, inverse-

Nyquist, Nichols plots) of displaying the system model in terms of its frequency

response. From these plots, one can determine by inspection the minimum charqe

in the model frequency response that leads to instability. These changes are

often quantified by the gain and phase margins of the feedback systemf; sometimes

the design is required to have certain minimal margins in order to be acceptable

[4, p. 43].

In modern time domain techniques (such as the pole placement or

linear-quadratic-Gaussian approaches) for multiple-input, multiple-output

(MIMO) systems, the robust ess issue is not directly dealt with. Instead, it

is necessary to transform the resulting design to the frequency domain to examine

its robustness properties. For SISO systems, this is accomplished as for

classical designs, but the situation is less clear in the MIMO case, where it

is necessary to consider simultaneous variations in the frequency responses

of all the loops.

Very recently, there has been some important work addressing the

multivariable robustness issue. In his thesis [5,61 Saftnov gives a powerful

approach, based on a multivariable sector stability theorem, that can characterize

robustness for very general nonlinear MIMO feedback systems. In a recent paper

(7], Doyle develops a robustness characterization for the linear time invariant

MIMO case (It can be shown that Doyle's result can also be obtained by Safonov's
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approach [81.) Doyle's characterization involves computing the minimum singular

value of a certain transfer function matrix, and this computation essentially

determines the minimum simultaneous vaciation of the system frequency responses

tiat leads to instability. Since there is sophisticatd and widely accessible

software to compute singular values [9], this characterization is of great

practical value.

The present paper is prompted by two observations. First, the use

of singular values to characterize robustness is suggestive of connections with

n~znerical analysis, but these connections are not clear from Doyle's approach

utilizing the multivariable Nyquist theorem. Second, a specific instance of the

robustness question arises when a system is approximated by making a singular

perturbation to reduce its order. A related motivation, although only briefly

discussed in this paper, arises from the desire to use multi-model techniques in

the design of decentralized controllers for large scale systems [10,11].

The structure of this paper is as follows. In Section 2 we consider

the robust stability of MIMO linear feedback systems using a generalized numerical-

analytic approach. When specialized to the time invariant case, with

rational transfer function matrix perturbations, Doyle's characterization

results. In Section 3 we will apply the results of Section 2 to a specific

robustness question arising in singular perturbation theory. Section 4 contains

the summary and conclusions.

Notation

We will use the standard notation of input-output Stability theory:

see (12, pp. 13-14], or [13, pp. 38-391.

X - some Banach space of functions x:T - X

T - subset of the real numbers
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NTIS a
X = finite dimensional vector space DOC TAB

U" anonC e d

Xe = x E X for all TT1 Justifcation

7U tificjon

jx~t) t < T BY(PTX) (t) = D010t > T . . . ..

space of m-vector functions on T A %I i

2 Dst~ cawith integrable Euclidean norm SP

I: Xe ' e = identity operator /
G X X is causal if P GP = P G

e e forall T T T

A*= conjugate transpose of a complex
matrix A.

2. Robust Stability of Linear Systems

We consider the feedback system depicted in Figure 1. Here

the causal linear operator G - represents the plant
2e -2e

plus any compensation that is used. The basic feedback equation

is

(I + G)e - u (2.1)

and the basic stability question is whether (I + GI1 2e 2e

exists, is causal, and is a bounded linear operator when restricted to the
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Figure 1. Basic MIMO Linear Feedback System
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subspace m of . .E .,;i 1 ass~ue that the nominal system is stable in-2n

this sense throughcut this section, i.e. for u e 2 there exists a unique
2e

causally related e E: J? satisfying (2.1), and that u E implies that the

2e -2

-m
corresponding ec7m and consequently y = u-e ._'2 We are interested in

2 2

whether the closed loop system retains these properties when subject to

additive (Figure 2) or multiplicative (Figure 3) perturbations representing

uncertainty in the dynamical behavior of the system.

The following theorem provides the basis for our analysis.

THEOREM 1

Let A: X e- X be a causal linear oerator, and suppose A-

e e

exists, is causal, and is bounded when restricted to X . Then, if

AA : X - X is a causal linear operator that is bounded when restrictede e

to X , and if

IIA-AIIx < 1, (2.2)

it follows that (A + AA) -  : X - X exists, is causal and is bounded when
e e

restricted to X.

Proof

The operator A- AA is well defined, causal, and bounded on X

by assumption. Since !JA A fX < 1, the contraction mapping theorem

implies that the sequence xk , k = 0,1..., defined by

xk+ 1 = -A-IAN, + b; x 0 0 (2.3)

converges to a unique solution xEX of
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Figure 2. System Subject to Additive Perturbations
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Figure 3. System Subject to Multiplicative Perturbations



-i0-

kj + A-'A)x = b 2.4)

for any :b (. ThusI A- X - X exists, and i3 therefore bounded

sznce A-IA is. Causality follows since each iterate xk depends causaL>:

on b and consequently the limit x of xk depends causally on b. Since

(I + A- A) 1is causal, it can be uniquely extended to Xe by requiring

P (I + A-lAA)-ix = P (I A- LA) X (2.5)TT

for x E Xe . Finally, defining

(A + A A)- =( + A-IA)I- (2.6)

gives the required inverse of A + LA. Q.E.D.

Remarks

1. Since

IjA-lAAIIX < :'A-'1: ILAA! (2.7)

a sufficient condition for (2.1) is

lA-111x IAAIIX < 1. (2.8)

2. A basic result in numerical analysis is that if an nxm matrix A

is invertible, then A + LA is invertible for all LA satisfying

(A) < a(A) (2.9)

where "(AA) = IIAAiI 2, O(A) = (IA - ' -

are respectively the smallest and largest singular values of the matrix A.



Theorem 1 is thus a generalization of this classical finite dimensional result where,

of course, boundedness and causality are not at issue. In the finite dimensicna±

case there exists iA such zhat z(I) = z A) and A + 'A is singular; this is

1
easily proved by the singular value decomposition

3. The contraction mapping argument in Theorem 1 is a standard technique of

applied matheratics; the fact that X is not a Banach space complicates th-e arcument.e

The causality argument has been used by Willems [12, p. 98] in a slightly

different context. The linearity of the perturbation operator is not essential.

4. Theorem 1 can be used to give robust stability results, but we willp

confine ouselves to the case p = 2 in the sequel.

5. Theorem 1 can be used to obtain robust stability results for both

continuous and discrete time, but in the sequel we will confine our attention

to the case T = [0,-].

The robust stability questions posed at the beginning

of this section are now answered in terms of Theorem 2.

THEOREM 2

Assume that the basic feedback system of Figure 1 is stable. Then

(i) the system remains stable for additive pertubations G (Figure 2) provided

I(I+G)-l GCim < 1 (2.10)
2

and (ii) the system remains stable for multiplicative perturbations AG (Figure 3)

1The singular value decomposition of an nxn nonsingular complex matrix A is

A=UEV*, where U and V are unitary nxn matrices, Z = diag (a ........ ) and
the singular values o are the non-negative square roots of ihe eigenvaiues of
A*A. See (14] for re erences, a more general definition, and an excellent
discussion of the fundamental role of the singular value decomposition in linear

systems theory.

,,i- _ vi -? ' " . ....
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pr c'vi ded

T - (I +G)-i@L 1 (2.11)
2

Proof

For case (i), we apply Theorem i to the equation

(I + G + AG)e u (2.12)

while for case (ii) we consider

(l+G(l+LG) ]e = (l+G+(i +O)LG-AG)e = u. Q.E.D. (2.13)

The practical importance of Theorem 2 stems frora the fact tnat the
-
m

2 norm of a linear convolution operator can be computed from its transfer

function matrix. This fact, which is a consequence of Parseval's Theorem,

is well known in the input-output stability theoretic literature; see,

e.g., (13, p. 26].

Lemma 1

Let the operator G: 9 2 n for T = [0,-] be &.-fin., by
2200y

(Gx) (t) = fG(t-T) x(T)dT (2.14)

where the elements of the impulse response matrix G(t) are assumed

absolutely Integrable on T. Then

HIGII C (2.15)
2

where

Sax X m. i (G(.J)) (2.16)max >_
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and where a. CG(j'z)) denotes the ith singular value of the transfer function

matrix corresponding to G.

Combining Theorem 2 and Lemma 1, we obtain the following result.

THEOREM 3

Assume that the nominal system in Figure 1 is time invariant, stable,

and that the operators (I+G)-,'1G can be represented as convolution

operators with impulse response matrices with absolutely integrable elements.

Then (i) the system remains stable for additive perturbations .G satisfying

U(AG(joJ)) < 0(I+G(jw)), > 0 (2.17)

and (ii) the system remains stable for multiplicative perturbations

satisfying

a(AG(jc)))< a(I+G- (jW)) w > 0. (2.18)

Here G(jw) and AG(jW) are the transfer functions of G and ,G, and

a(A) and G(A) denote the maximum and minimum singular values of A.

Proof

(i) From Lemma 1 and (2.17) we have

110G1I H1(I+C- K(2.19)

so that

(ii) Note that

a(I+G 1 ()) F {a(:+C--l ij)] l

-F[(I+G(ju))-l G(jw)] = F[I-(I+G(jw)) ] (2.21)

Therefore Lemma 1 and (2.18) imply that

I - (I+G) 1 K - ;LGII < 1 (2.22)

Q.E.D.

1'~ 
V
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Remarks

2. Notice the analogy between Theorem 3 7on.erning robust stabilltv

linear systems and the classical result cte" 7rv-_cusl" Zmncerr.nc ronust

inversion of matrices (or bounded m-.erators'.

2. Theorem 3 for the case of rational transfer function matrices is !ne

-esult of Doyle alluded to previously. Doyle's proof is completely different,

aowever, depending nn te mulivariabie Nyquist Theorem, so that the con.. ctlns

w-th the inversion issue are only implicit.

3. The quantitvc (I+G( )) ) or u (I-3 1 ) is easily computed and micrte

as a function of w. Doyle has made great use of this technique in the analvs_-S

of multivariable feedback systemas. Such a -lot plays much the same

role for determining MINO robustness properties as the more classical Bode,

etc. plots in SISO design.

4. The quantity -1 (I+G(ji)) is the generalization of the classical Bode

SISO sensitivity function of changes in the closed-loop transfer function with

respect to changes in the open-loop transfer function in the following sense.

Let y denote the output of the system of Figure 1 for a given input and

Y2 the corresponding output of the system of Figure 2 for the same input.

Then one can show

y1 (jW) - y 2 (jcu) - (I+G(jcu) AIG(jcu) (G(ju) + AG( jw) -Iy 2 (jWj)

(2.23)

so that

ly1(j)_ Y2 (j)I< aI+Gj l I G(jw)(I+G(jw) + -G(jw))-;;x

dy2(j) wI. (2.24)

Consequently, the percentage change in the closed-loop transfer function

matrix is attenuated from the percentage change in the open loop transfer



function matrix by the facto .  
- (jA

5. On the other hand, the perturbations defining the SISC' gain a:r!

phase margins are multicli ative rather than additive, so that +:

is more appropriate as a measure of the tolerance of the feedback systen

to model uncertainty.

6. It is in general impossible to express 0(I + G (jai)) in terms of

F(I + G(jw)L

7. Consider the feedback system in Figure 1 with

-i
G(s) = -G(sI - A) B (2.25)

where

G = B'K (2.26)

0 = A'K + KA + C'C - KBB'K (2.27)

(We assume [A,B] controllable and [AC] observable so that a unique positive

definite solution of (2.27) exists.) The well known equality [15]

[I + G(-sI - A)- B]' [I + G(sI - A)- B] = I + T.C(-sI-A)- B]' [C(sI - A)- B],

(2.28)

which follows from (2.27) after a little manipulation, shows that the system

is robust to additive pertubations. Safonov and Athans [6] have shown that

the system of Figure 3 with G(s) defined by (2.25)is stable for AG(jw) satisfying

F(AG(jw)) < 1/2 for all w > 0;

this can also be inferred directly using the inequality [19]

0(I + G 1(jW)) > (2(I + G(j)) .29)
- 1 + o(I + G(jw))

together with (2.28) and Theorem 3.



3. Application to Singular Perturbation Thvor,..'

In the previous section we h.av:e discussed the robustness of the stabhlit:

:roerty of a linear dynamic system t) mcdel variat:ons. In this seti-rw

wJIl consider a particular form of mcdel variation due to a singular perturcoat".-n.

We consider systems of the form

x ,t) A 1 x 1(t) + A 2('t)

(3.1

£x21t) = A x t) + A x, 2t)
2 21 1

where c>O is a small parameter, and it is assume that the matrix A22 is

stable (has eigenvalues with negative real parts). We define the so called

degenerate system

Xld(t) = (A -A A-1 A )x (t) (3.2)
Id1l 12 22 21 Id

associated with (3.1). This system is a reduced order system that neglects

certain high-frequency or parasitic effects incorporated in the model (3.1).

It has been shown that the stability of (3.2) (in the sense that the eigen-

values of the system matrix have negative real parts) is insensitive to these

effects in the sense that there exists E >0 such that (3.1) is stable for
a

all 0<E<C if (3.2) is [17]. We propose to examine the robustness of the0

stability (in the input-output sense of Section 2) of (3.2) to the parasitic

effects present in (3.1).

We begin by Laplace - transforming equations (3.1) (assuming zero initial

condition).

See (16] for an excellent survey of results in singular perturbation theory.



-i
x (S) = (sI - A, ) A X (S) (3.3)
1 ,1 122-

-1
x2(s) = (gs! - A1) A1 X(S)

22 2111
= [I - £s(Es_ - A2 2) ] (-A 2 2 A2 1 )Xl[S) (3.4.

To apply the input-output stability results of the previous section it is

necessary to apply a test input to the system. This is most conveniently

1
done as illustrated in Figure 4, although other locations are possible

Figure 4 closely resembles Figure 3 with

G(s) = A A (sI - A A (35)
22 21 Ui 12

AG( ,E) = -*s(EsI - A 22) (3.6)

except that the perturbation is post-multiplicative rather than pre-

multiplicative. However, assuming G(s) has full rank as a rational matrix,

it is easily verified tnat the analysis of the preceding section is essentially

unaffected. Thus we have the following result.

1
To insure the equivalence of the input-output stability analysis with the

condition that the system matrix of (3.1) has eigenvalues with negative real
parts, it is necessary to have the conditions

[~1. [I.2] ~controllable,

(0 11 rA 1

[]2 observable.

IA .2 .A. .
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U A;~A 2, (sI-A1 1)1A1  I - ES(esI-A 2 ) x(

Figure 4. Singular Perturbation in the Frequency Domain.
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THEOREM 4

Assume that the system of Figure 4 is stable for E = 0. Then it remains

stable for all E > 0 satisfying the inequality

-1

< (AG(jw,E)) C (I + G (j )) (3.7)

for all w>O.

The use of Theorem 4 is illustrated by the following examples.

Example 1

xl(t) = Xl(t) + 2 x2(t)
1 1 2 (3.8)

Ex2 (t) = -x2 (t) - x (t)

2
G(s) 2 (3.9)

s-1

AG(s,E) = (3.10)
Es+l

In this case for which G and AG are scalars, the condition (3.7) is

equivalent to

1l + G-1 (jW)I > jG(jw,£j', (3.11)

or

11 + G(jJ)l > IG(jc)LG(jwb )i (3.12)

for all w>0.

The condition (3.12) has an interesting graphical interpretation.

Specifically the Nyquist locus of G(ju) must avoid the critical point -1

by at least the distance :G(jw)AG(jw)' (Figure 5). It is easily verified

that for E -+1 and w 2, we have 1 + G(jw)! - I G(jw)AG(j) I so that

C 0 1. It can be directly verified that the system (3.8) becomes unstable

for C 1.

IY



83702AV 069

Im G(jw)

Re G(jw)

Figure 5. Illustrating the Condition (3.12).
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Example 2

2 1 21(.1

G(s) = 1(3. 14)
s+l

AG(s,E:) 1sEs ( 5

As in the previous example, we will check (3.12). We have

EW (3.16)

so that the system is stable for all C > 0!



Summary and Conclusions

in tiis narer we nave consizered the robustness of tie stability

7roperty of a linear feedback system to variations in the system model.

?he aporoach was to generalize a fundamental result in numerical linear

,igebra concerning robust inversion of matrices to linear operators of

the type arising in input-output stability theory. In the time-invariant

case, this approach specializes to give sufficient conditions for stabillty

under additive and multiplicative perturbations that are easily verified

;y computing the singular values of certain transfer function matrices.

We then applied the robustness condition to the analysis of singularly

perturbed systems. We were able to give an explicit, readily comoutable

bound on the magnitude of the perturbation :araneter £ that can be tolerated

and still have a stability analysis of the reduced system valid for the full

system.

The results of this paper are felt to be of interest for two reasons.

First, as Doyle has previously pointed out in the time invariant case [7],

the characterization and design of robustly stable MIMO feedback systems

is a fundamental problem in control theory that has yet to be completely

resolved. Second, as has been previously emphasized by Zames [18] and Safonov

[51, a fundamental problem in large' scale system theory is to give conditions

for the success of designs based on multiple, aggregate models of a single

large system - this is essentially a robustness problem.
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